Abstract

One-way wave operators are powerful tools for forward modeling and migration. Here, we describe a recently developed true-amplitude implementation of modified one-way operators and present some numerical examples. By “true-amplitude” one-way forward modeling we mean that the solutions are dynamically correct as well as kinematically correct. That is, ray theory applied to these equations yields the upward- and downward-traveling eikonal equations of the full wave equation, and the amplitude satisfies the transport equation of the full wave equation. The solutions of these equations are used in the standard wave-equation migration imaging condition. The boundary data for the downgoing wave is also modified from the one used in the classic theory because the latter data is not consistent with a point source for the full wave equation. When the full wave-form solutions are replaced by their ray-theoretic approximations, the imaging formula reduces to the common-shot Kirchhoff inversion formula. In this sense, the migration is true amplitude as well. On the other hand, this new method retains all of the fidelity features of wave equation migration. Computer output using numerically generated data confirms the accuracy of this inversion method. However, there are practical limitations. The observed data must be a solution of the wave equation. Therefore, the data must be collected from a single common-shot experiment. Multiexperiment data, such as common-offset data, cannot be used with this method as presently formulated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.