Antimicrobial resistance (AMR) in bacteria is a major public health concern in the US and around the world. Campylobacter is an important foodborne pathogen that resides in the gut of pigs and is shed in feces, with the potential to be transmitted to humans. In pigs, the oral route, either in-feed or in-water, is by far the most common route of administration of antimicrobials. Because the distribution of the antibiotic in the gut and the dosages are different, the impact of in-feed vs. in-water administration of antibiotics on the development of AMR is likely to be different. Therefore, a study was conducted to compare in-feed vs. in-water administrations of chlortetracycline (CTC) and/or tiamulin on fecal prevalence and AMR profiles of Campylobacter among weaned nursery piglets. A total of 1,296 weaned piglets, allocated into 48 pens (27 piglets per pen), were assigned randomly to six treatment groups: Control (no antibiotic), in-feed CTC, in-water CTC, in-feed tiamulin, in-water tiamulin, or in-feed CTC and tiamulin. Fecal samples were collected randomly from 5 piglets from each pen during the pre-treatment (days 0, 7), treatment (days 14, 21), and post-treatment (days 28, 35) phases. Bacterial isolations and species identifications were conducted by culture and PCR, respectively. The microbroth dilution method with SensititreTM plates was used to determine the antimicrobial susceptibility and resistance of Campylobacter isolates. The results on resistance were interpreted based on the European Committee on Antimicrobial Susceptibility Testing (EUCAST) epidemiological cutoff values for Campylobacter. The overall prevalence of Campylobacter was 18.2% (262/1440). Speciation of Campylobacter isolates by PCR indicated the prevalence of only two species: Campylobacter hyointestinalis (17.9%; 258/1440) and C. coli (0.3%; 4/1440). Campylobacter isolates were resistant to tetracycline (98.5%), ciprofloxacin (89.3%), and nalidixic acid (60.3%). Neither the antibiotic nor the route of administration had an effect (p > 0.05) on the prevalence of AMR Campylobacter in the feces of piglets.
Read full abstract