Multiphase systems provides benefits compared to three-phase systems, such as improved torque per ampere, high power density, better fault tolerance, lower current per phase (due to power-splitting among a higher number of phases), and lower torque ripple, among others. Depending on the application, the system must meet determined requirements, such as the presence of harmonic content, power losses, and common-mode voltage (CMV) generation. This paper presents a comparative analysis of space vector modulation (SVM) techniques applied to a five-phase voltage source inverter with SiC switches to provide an overview of their performance. The performance of five-phase 2L SVPWM (space vector pulse width modulation), 2L+2M SVPWM, 4L SVPWM techniques, and their discontinuous versions, are analyzed by focusing on harmonic content, power losses, and CMV generation using SiC semiconductor devices. Matlab/Simulink and PLECS simulations are performed to achieve the above mentioned goal. The use of different techniques allows (1) reducing the harmonic distortion when 2L+2M SVPWM and 4L SVPWM are applied, and (2) the switching sequence of the modulation techniques can influence the switching losses. Therefore, the use of SiC switches reduces the switching losses. (3) However, CMV dv/dt increases. Therefore, it is possible to minimize the effects of the CMV dv/dt and amplitude by choosing the adequate technique.