Despite different infection strategies, enteric pathogens commonly employ a T3SS to colonize the human host and cause disease. Effector proteins are unique to each T3SS-encoding bacterial species and generally lack conserved amino acid sequences. However, T3SS effectors from diverse pathogens target and manipulate common host cell structures and signaling proteins, such as the actin cytoskeleton and MAPK pathway components. T3SS-encoding Vibrio cholerae strains and effectors have been relatively recently identified, and the mechanisms used to mediate colonization and secretory diarrhea are poorly understood. Two V. cholerae effectors that modify the host actin cytoskeleton were shown to be important for colonization. We therefore sought to determine the target(s) and mechanism of a third actin-reorganizing effector, VopX, based on results obtained from a yeast model system. We recapitulated actin-based phenotypes in multiple mammalian model systems, leading us to identify the molecular function of the V. cholerae VopX effector protein.
Read full abstract