This paper presents a novel service-oriented network architecture to bridge the informational gap between user applications and optical networks providing technology-agnostic multigranular optical network services for clouds. A mediation layer (service plane) between user applications and network control is proposed to facilitate a mapping process between user application requests and the network services. At the network level, a multigranular optical network (MGON) is proposed and implemented to support dynamic wavelength and subwavelength granularities with different transport formats [optical burst switched (OBS), optical burst transport (OBT)], reservation protocols (one-way, two-way), and different quality-of-service (QoS) levels per service type. The service-oriented multigranular optical network has been designed, implemented, and demonstrated on an experimental testbed. The testbed consists of service and network resource provisioning, service abstraction, and network resource virtualization. The service-to-network interoperation is provided by means of a gateway that maps service requests to technology-specific parameters and a common signaling channel for both service and network resource provisioning.
Read full abstract