Abstract Prostate cancer (PCa) is one of the most common cancer diseases in men in the western countries [1]. Besides the palpation, and the amount of prostate-specific-antigen’s (PSA) inside the blood, the current diagnostic imaging technologies are not appropriate. Early diagnosis defining the exact tumor location, spread and margins could make efficient targeted biopsies and image-guided surgery. A multimodal imaging technique containing a transmit-receive surface coil for anatomical MR imaging, a (S)PET detector module, consisting of silicon photomultipliers (SiPM), for functional imaging and an ultrasound (US) probe are placed as close as possible to the prostate designed as an endorectal tube to increase sensitivity and spatial resolution. All materials that are used are non-magnetic. Advantages of the SiPM are diversified, like non-sensitive to magnetic fields, higher gain (105–106) than standard avalanche photodiodes (APD), good timing properties and compactness. The PET detector should reach approximately 1mm3 spatial resolution together with 60ps FWHM Time-of-Flight resolution and a high efficiency to reduce scanning time and injected dose. A home-made transmit-receive coil surrounding the PET module improves signal-to-noise-ratio (SNR) with respect to standard coils will be present. The system will be used as a MRI-insert and be able to visualize anatomic and metabolic information together. The US-probe is guiding examination for correct overlapping of the multimodal images. This procedure will save time, costs and the need of co-registration. By combining all advantages of each system, it will necessarily update the non-invasive treatment of PCa. The system is adapted and tested to a 3 Tesla MR scanner called Trio A Tim system and Allegra system from the company Siemens healthcare with a larmor frequency of 123.2 MHz and an input of 50 Ω free from artifacts. First results on homogeneity of the transmit-receive coil will be presented. Preliminary measurements showing the proposed device is challenging but feasible.