Breaching of coastal barriers is a three-dimensional process induced by complex interactions between hydrodynamics, sediment transport and soil avalanching processes. Although numerous coastal barriers are breached every year in many coastal countries, causing dramatic inundations of the nearshore areas, the understanding of the processes and interactions associated with both breaching and subsequent flood propagation is still poor. This might explain why their combined modelling and prediction has not yet been sufficiently addressed. Consequently, barrier breaching and subsequent inundation are still often modelled separately, thus ignoring the strong interaction between breaching and flooding. However, the combined modelling of such strongly coupled processes is crucial. Since the open-source model system “XBeach” consists, among others, of a nonlinear shallow water solver coupled with a morphodynamic model, also including a soil avalanching module, it has the potential to simulate both breaching and subsequent flood propagation together. Indeed, the mutual interactions between hydrodynamics and morphodynamics (including soil avalanching) are properly accounted for. This paper, therefore, aims to examine the applicability of XBeach for modelling coastal barrier breaching and inundation modelling in combination, instead of the current approaches, which address the modelling of each of these two processes separately. The performance of XBeach, in terms of inundation modelling, is assessed through comparisons of the results from this model system (i) with the results from common 1D and 2D flood propagation models and (ii) with observations for barrier breaching and subsequent inundation from a real case study. Besides providing an improved understanding of the breaching process, the results of this study demonstrate a new promising application of XBeach and its potential for calculating time-varying inland discharges, as well as for combined modelling of both dune breaching and subsequent flood propagation in coastal zones.
Read full abstract