In recent years, hybrids with levels of resistance to sorghum midge (Stenodiplosis sorghicola Coquillett) have become available to Australian sorghum producers. These hybrids have been readily accepted to the extent that more than 80% of the sorghum growing area was planted to hybrids with some level of midge resistance by 1995. Since selection for resistance to sorghum midge is one of the primary objectives of Australian sorghum breeding programs, the relationship between resistance and genetic diversity was investigated. Genetic diversity and heterozygosity were assessed using restriction fragment length polymorphism analysis among 26 grain sorghum hybrids grown commercially in Australia. The genetic distances between each sorghum hybrid and a standard highly resistant hybrid were found to be strongly negatively correlated to hybrid midge resistance ratings (r = - 0.77, p < 0.001). In addition, the average heterozygosity of each hybrid was correlated with their midge resistance ratings (r = - 0.54, p < 0.01). The results indicate that the move to midge resistant hybrids has been associated with a narrowing of the genetic diversity and average heterozygosity of commercial sorghum hybrids. Repeated use of particular elite parent lines, linkage drag and genetic drift are likely to have contributed to this decline. This reduction in genetic diversity may have implications for the genetic vulnerability of sorghum in Australia and the rate of progress in breeding for yield.