BackgroundThe ongoing infusion of pharmaceutical and personal care products (PPCPs) into ecosystems sustains a perpetual life cycle and leads to multi-generational exposures. Limited understanding of their environmental impact and their intrinsic ability to induce physiological effect in humans, even at low doses, pose great risks to human health. Few scholarly works have conducted systematic research into the occurrence of PPCPs within potable water systems. Concurrently, the associated monitoring techniques have not been comprehensively examined with regards to the specific nature of drinking water, namely whether the significant presence of disinfectants may influence the detection of PPCPs. ResultsA modified approach in terms of detailed investigation of sample preservation and optimization of an in-lab fabricated solid phase extraction (SPE) cartridge filled with DVB-VP and PS-DVB sorbent was proposed. Favorable methodological parameters were achieved, with correlation coefficients spanning from 0.9866 to 0.9998. The LODs of the PPCPs fluctuated from 0.001 to 2 μg L−1, while the LOQs varied from 0.002 to 5 μg L−1. The analysis of spiked samples disclosed a methodological precision of 2.31–9.86 % and a recovery of 52.4–119 %. We utilized the established method for analyzing 14 water samples of three categories (source water, finished water and tap water) from five centralized water supply plants. A total of 24 categories encompassing 72 PPCPs were detected, with the concentrations of PPCPs manifested a marked decrease from source water to finished water and finally to tap water. SignificanceOur research meticulously examined the enhancement and purification effects of widely used commercial SPE cartridges and suggested the use of in-lab fabricated SPE cartridges packed with DVB-VP and PS-DVB adsorbents. We also conducted a systematic evaluation of the need to incorporate ascorbic acid and sodium thiosulfate as preservatives for PPCP measurement, in consideration of the unique characteristics of drinking water matrices, specifically, the significant concentration levels of disinfectants. Furthermore, the proposed method was effectively employed to study the presence of PPCPs in source water, finished water, and tap water collected from centralized water supply plants.
Read full abstract