Abstract

In this work, porous electrospun microfibers (PEMFs) were prepared using a polyimide/polyvinylpyrrolidone/polyethylene glycol (PI/PVP/PEG) solution mixture with coaxial ultrasonic water vapor spraying. After removing PVP and PEG by ultrasonic water washing, the PEMFs were successfully demonstrated as adsorbents for solid phase extraction (SPE). Most non-porous electrospun nanofibers are hundreds of nanometers in diameter, with a specific surface area of dozens of square meters per gram. In contrast, the diameter of the as-prepared PEMFs was tuned between 3 and 8μm, the specific surface area was 76 m2g-1 and the pore size was ca 25nm. Therefore, the flow resistance of the PEMF-SPE cartridges was similar to those of conventional commercial SPE cartridges, and much lower than those of SPE cartridges packed with electrospun nanofibers. Using the PEMF-SPE cartridges with ultra-performance liquid chromatography-fluorescence detector (UPLC-FLD), five fluoroquinolones (FQs) in tap water, egg and milk samples were extracted and quantified successfully. After optimizing the extraction conditions, FQs in water samples were extracted and eluted with high recoveries of 84.8-114.8%. The inter-batch and intra-batch relative standard deviation (RSD) values for the FQs were in the range of 1.9-9.5% (n=3), and the limits of detection were between 0.0024-0.014μg L-1. The method was linear in the concentration range of 0.005-10μg L-1. The reliability of the developed method was validated by analyzing tap water, egg and milk samples, and the recovery values were found to be in the range of 74.8-116.6% under the optimized conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call