Two different commercial SCR catalysts belonging to the V 2O 5–WO 3–TiO 2 system, and different alternative catalysts based on Mn, Fe, Cr, Al and Ti oxides have been tested in the conversion of VOCs in excess oxygen in a temperature range typical of the SCR process (500–700 K). Propane, propene, isopropanol, acetone, 2-chloropropane and 1,2-dichlorobenzene have been fed with excess oxygen and helium. The industrial catalysts are poorly active in the conversion of propane, giving mainly rise to propene by oxy-dehydrogenation. The conversion of propene is higher with CO as the predominant product. In any case, the oxidation activity depends on the vanadium content of the catalyst. Isopropanol is mainly converted into acetone and propene, while acetone is burnt predominantly to CO. Mn- and Fe- containing systems are definitely more active in the conversion of hydrocarbons and oxygenates, giving rise almost exclusively to CO 2. 2-Chloropropane is selectively dehydrochlorinated to propene and HCl starting from 350 K, propene being later burnt to CO on the industrial V 2O 5–WO 3–TiO 2 catalysts, whose combustion activity is, apparently, not affected by chlorine. On the contrary, chlorine strongly affects the behavior of Mn-based catalysts, that are active in the dehydrochlorination of 2-chloropropane, but are simultaneously deactivated with respect to their combustion catalytic activity. The conversion of 1,2-dichlorobenzene gives rise to important amounts of heavy products in our experimental conditions with relatively high reactant concentration.
Read full abstract