In 1995, the launch of the first commercial chitin synthesis inhibitor (CSI) bait led to the transformation of the subterranean termite control industry around the world. Their slow mode of action, which relies on both their ability to be transferred among nestmates and termite molting biology, has made them cost-effective solutions for subterranean termite colony elimination while minimizing the introduction of pesticides into the soil toward an environmentally sustainable strategy. However, despite successful commercial implementations, the acceptance of their use varies within the pest control industry around the world. Notably, the nuanced complexity of how CSI baits lead to colony elimination upon feeding by termite foragers has, in part, remained elusive for the past 3 decades, allowing for long-lasting misconceptions to persist. A recent series of studies has since provided complementary elements of understanding how CSI baits utilize termites' inherent colony demography, behavior, and physiology to trigger colony elimination after a characteristic succession of events within the colony collapse process. I here provide a synthetic overview of subterranean termite colony characteristics when exposed to CSI baits using Coptotermes (Wasmann) (Blattodea: Heterotermitidae) as a primary model system. The changes in colony demography through the colony collapse reflect how the mode of action of CSI baits makes them a prime solution for sustainable subterranean termite pest management. Following decades of innovation, ongoing interactions among termite researchers, bait product manufacturers, and pest management providers must continue to bring solutions to existing and emerging termite pest problems around the world.
Read full abstract