Abstract

AbstractAngiotensin‐converting enzyme inhibitors are widely used in treating arterial hypertension, acting on the renin‐angiotensin‐aldosterone system and controlling blood pressure. We present a novel, greener, and faster methodology to assess the 1,2,4‐oxadiazol‐5‐one ring and perform molecular modifications to obtain angiotensin‐converting enzyme (ACE) inhibitors using this heterocyclic core. Molecular docking simulations indicate that the tested compounds exhibited an affinity for the ACE binding site, with scores comparable to the commercial inhibitor lisinopril. However, in vitro assays revealed that the compounds were ineffective in inhibiting ACE activity. The lack of inhibition may be related to the compounds' more apolar nature. These results emphasize the importance of integrating computational and experimental approaches in developing new drugs, providing valuable insights for planning future studies to optimize the activity of synthesized compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.