AbstractNanotechnology is emerging as a promising tool to enhance traditional cancer treatments due to rising chemotherapy resistance and the severe side effects of toxic drugs. Silver nanoparticles (AgNPs) are widely acknowledged for their antimicrobial and antiproliferative properties. Given these AgNP characteristics, this research conducts a comprehensive nanotoxicological assessment of strategic combinations involving AgNPs (68 nm) commercial formulation and tamoxifen on MCF‐7 and MDA‐MB‐231 breast tumor cells. Utilizing CompuSyn software, the combination index was determined, revealing a synergistic cytotoxic and antiproliferative effect in AgNPs and tamoxifen combinations (CI < 0.97). Furthermore, this combination impaired cell migration (the scratch zone expanded by over 270%) and significantly increased reactive oxygen species production (up to 96% for MDA‐MB‐231 and 52% for MCF‐7 cells). Surprisingly, the genotoxic effect of these mixtures was minimal (below the allowable genotoxicity index of 1.5). Additionally, both breast tumor cell lines exhibited increased proapoptotic and oxidative stress gene expression following the combined treatment. The internalization of AgNPs into breast cancer cells was observed, enhancing their synergistic antiproliferative effect when combined with tamoxifen. These findings suggest the potential of combining AgNPs with chemotherapeutic agents for innovative studies in oncology therapy.