The aim of this study was to quantitatively demonstrate radiation dose reduction for sinus and temporal bone examinations using high-resolution photon-counting detector (PCD) computed tomography (CT) with an additional tin (Sn) filter. A multienergy CT phantom, an anthropomorphic head phantom, and a cadaver head were scanned on a research PCD-CT scanner using ultra-high-resolution mode at 100-kV tube potential with an additional tin filter (Sn-100 kV) and volume CT dose index of 10 mGy. They were also scanned on a commercial CT scanner with an energy-integrating detector (EID) following standard clinical protocols. Thirty patients referred to clinically indicated sinus examinations, and two patients referred to temporal bone examinations were scanned on the PCD-CT system after their clinical scans on an EID-CT. For the sinus cohort, PCD-CT scans were performed using Sn-100 kV at 4 dose levels at 10 mGy (n = 9), 8 mGy (n = 7), 7 mGy (n = 7), and 6 mGy (n = 7), and the clinical EID-CT was performed at 120 kV and 13.7 mGy (mean CT volume dose index). For the temporal bone scans, PCD-CT was performed using Sn-100 kV (10.1 mGy), and EID-CT was performed at 120 kV and routine clinical dose (52.6 and 66 mGy). For both PCD-CT and EID-CT, sinus images were reconstructed using H70 kernel at 0.75-mm slice thickness, and temporal bone images were reconstructed using a U70 kernel at 0.6-mm slice thickness. In addition, iterative reconstruction with a dedicated sharp kernel (V80) was used to obtain high-resolution PCD-CT images from a sinus patient scan to demonstrate improved anatomic delineation. Improvements in spatial resolution from the dedicated sharp kernel was quantified using modulation transfer function measured with a wire phantom. A neuroradiologist assessed the H70 sinus images for visualization of critical anatomical structures in low-dose PCD-CT images and routine-dose EID-CT images using a 5-point Likert scale (structural detection obscured and poor diagnostic confidence, score = 1; improved anatomic delineation and diagnostic confidence, score = 5). Image contrast and noise were measured in representative regions of interest and compared between PCD-CT and EID-CT, and the noise difference between the 2 acquisitions was used to estimate the dose reduction in the sinus and temporal bone patient cohorts. The multienergy phantom experiment showed a noise reduction of 26% in the Sn-100 kV PCD-CT image, corresponding to a total dose reduction of 56% compared with EID-CT (clinical dose) without compromising image contrast. The PCD-CT images from the head phantom and the cadaver scans demonstrated a dose reduction of 67% and 83%, for sinus and temporal bone examinations, respectively, compared with EID-CT. In the sinus cohort, PCD-CT demonstrated a mean dose reduction of 67%. The 10- and 8-mGy sinus patient images from PCD-CT were significantly superior to clinical EID-CT for visualization of critical sinus structures (median score = 5 ± 0.82 and P = 0.01 for lesser palatine foramina, median score = 4 ± 0.68 and P = 0.039 for nasomaxillary sutures, and median score = 4 ± 0.96 and P = 0.01 for anterior ethmoid artery canal). The 6- and 7-mGy sinus patient images did not show any significant difference between PCD-CT and EID-CT. In addition, V80 (sharp kernel, 10% modulation transfer function = 18.6 cm) PCD-CT images from a sinus patient scan increased the conspicuity of nasomaxillary sutures compared with the clinical EID-CT images. The temporal bone patient images demonstrated a dose reduction of up to 85% compared with clinical EID-CT images, whereas visualization of inner ear structures such as the incudomalleolar joint were similar between EID-CT and PCD-CT. Phantom and cadaver studies demonstrated dose reduction using Sn-100 kV PCD-CT compared with current clinical EID-CT while maintaining the desired image contrast. Dose reduction was further validated in sinus and temporal bone patient studies. The ultra-high resolution capability from PCD-CT allowed improved anatomical delineation for sinus imaging compared with current clinical standard.