The effects and interactions of incubation time and chick preplacement holding time on mortality at placement, utilization of yolk sac, crop filling rate, early feeding-drinking behavior, and broiler live performance were investigated. Ross 308 broiler hatching eggs from a 39-week-old flock were set in two identical setters in a commercial hatchery, with the setting time 12 h earlier in one machine. At the end of incubation, chicks were removed from the hatchers at the same time. Thus, the incubation times were either 504 h (normal incubation time (NIT) treatment) or 516 h (longer incubation time (LIT) treatment). After the pull time, chicks from each incubation time group were subjected to either 6, 24, 48, 60, or 72 h preplacement holding times. At placement, chicks were given access to feed and water. In total, 19,200 chicks were randomly assigned to a total of 10 subtreatment groups (2 incubation times × 5 preplacement holding times). Therefore, a total of 1920 chicks were used in each subtreatment group for the grow-out period in a commercial broiler house. For the first week of the experiment, 160 randomly selected as-hatched (not sexed) chicks were placed in 12 replicate floor pens (120 total pens). From the second week of age onward, chicks from two pens were combined into six replicate pens, with 320 chicks per replicate (60 total pens). An interaction was found between incubation time and preplacement holding time for residual yolk sac (RYS) weight (g, %) (p < 0.001). RYS weight was greater at pull time and at 6 and 24 h of preplacement holding in the NIT treatment compared to the LIT treatment, while differences were no longer evident at 48-72 h. The lowest percentage of chicks with full crops and eating activity was observed in the shortest preplacement holding time (6 h) group at 3 h after placement. As expected, the initial BW at placement clearly decreased with increasing duration after the pull time (p < 0.05), with the highest and lowest weights found in the 6 and 72 h holding time treatments, respectively. This BW difference was still evident at 35 d after placement and chicks held for the longest period after the pull time (72 h) showed the lowest BW (p < 0.001). However, there was no significant difference between the 6 and 60 h preplacement holding times. Mortality during the first 7 d after placement increased only when the preplacement holding time was extended to 72 h (p = 0.031). Similarly to the 7 d results, chicks held for 72 h exhibited higher 0-35 day mortality compared to those held for 6 or 24 h (p = 0.028). Neither BW nor mortality was affected by incubation time treatment at 35 d after placement (p > 0.05). It can be concluded that there were no significant differences in average BW and mortality, up to and including a 60 h holding time under thermal comfort conditions, but a 72 h preplacement holding time resulted in final BW and mortality being negatively affected. In addition, LIT tended to have a beneficial effect on BW and mortality compared to NIT when the preplacement holding time was shorter (6-24 h) but had a negative effect for extended holding times (48-72 h).