To accommodate the integration of renewable energy, coal-fired power plants must take on the task of peak regulation, making the low-load operation of boilers increasingly routine. Under low-load conditions, the phase transition point (PTP) of the working fluid fluctuates, leading to potential flow instability, which can compromise boiler safety. In this paper, a one-dimensional coupled dynamic model of the combustion and hydrodynamics of a supercritical boiler is developed on the Modelica/Dymola 2022 platform. The spatial distribution of key thermal parameters in the furnace and the PTP position in the water-cooled wall (WCW) are analyzed in a 660 MW supercritical boiler when parameters on the combustion side change under full-load and low-load conditions. The dynamic response characteristics of the temperature, mass flow rate, and the PTP position are investigated. The results show that the over-fire air (OFA) ratio significantly influences the flue gas temperature distribution. A lower OFA ratio increases the flue gas temperature in the burner zone but reduces it at the furnace exit. The lower OFA ratio leads to a higher fluid temperature and shortens the length of the evaporation section. The temperature difference in the WCW outlet fluid between the 20% and 60% OFA ratios is 11.7 °C under BMCR conditions and 7.4 °C under 50% THA conditions. Under the BMCR and 50% THA conditions, a 5% increase in the coal caloric value raises the flue gas outlet temperature by 32.7 °C and 35.4 °C and the fluid outlet temperature by 6.5 °C and 9.9 °C, respectively. An increase in the coal calorific value reduces the length of the evaporation section. The changes in the length of the evaporation section are −2.95 m, 2.95 m, −2.62 m, and 0.54 m when the coal feeding rate, feedwater flow rate, feedwater temperature, and air supply rate are increased by 5%, respectively.
Read full abstract