An approach for modelling and simulation of the generation of nitrogen oxide (NOx) in the gas phase surrounding single burning droplets is presented. Assuming spherical symmetry (no gravity, no forced convection), the governing equations are derived first. Then simplifications are introduced and it is proven that they are appropriate. The influences of the initial droplet diameter, the ambient conditions, and the droplet pre-vapourisation on NOx are investigated. The fuel of choice is n-decane (C10H22) as it resembles kerosene and diesel fuel best, and the complexity of the reaction mechanism is manageable. Combinations of C10H22 mechanisms and well-established NOx kinetics are evaluated in detail and validated for their applicability in the context of this work. The conducted simulations of droplet combustion in an atmosphere of hot exhaust gas show that NOx formation (by mass of fuel) increases linearly with the droplet diameter. There is a trade-off between available oxygen and ambient temperature. Increasing the equivalence ratio of the exhaust gas leads to higher NOx emissions in the very lean regime, but to lower emissions if the equivalence ratio exceeds 0.85. Pre-vapourisation of fuel at ambient conditions becomes beneficial with respect to NOx emissions only if the degree of vapourisation is above a minimum limit. If less fuel is vapourised before ignition, the NOx emissions remain almost unaffected.