Relevance. Determined by the importance of analyzing the combustion characteristics and factors affecting the emission of nitrogen oxides (NOx) in the furnace chamber of pulverized coal-fired power boiler unit when installing tertiary air nozzles and changing the air flow rate through them, to ensure the reduction of negative anthropogenic impact on the environment. It should be noted that the use of tertiary nozzles is the most cost-effective technology of the internal furnace measures of NOx emission reduction. Aim. To analyze the effect of oxidant redistribution between secondary air and tertiary blast in the range of 40% on the burnout and NOx emission in the furnace chamber of a boiler unit with tangential burner arrangement. Objects. Power pulverized coal-fired boiler unit with natural circulation. Straight-flow burner devices are arranged according to the tangential scheme, tertiary blast nozzles are installed above the burners. Methods. Computational fluid dynamics modeling methods. For the simulation study of furnace processes the tested software FIRE-3D was used. The averaged equations of conservation of mass, momentum and enthalpy were solved to predict the velocity, temperature and concentration of components of the furnace medium in the furnace volume. The turbulent flow was modeled by the standard k-ε model. Coal particle transport was modeled using a discrete-phase model. The P-1 model was used for radiant heat transfer. Results. The authors have carried out the analysis of O₂, CO, and NOₓ concentrations, as well as velocity fields and temperature to examine the effects of varying the ratio of secondary and tertiary air in the furnace volume of a boiler unit with tangentially arranged burners and tertiary blast nozzles. Numerical modeling results revealed that with tertiary blast nozzles, the active combustion zone shifts upward. However, at higher proportions of tertiary blast, NOₓ reduction is not achieved due to increased temperatures at the furnace outlet. Taking into account NOx emissions and completeness of fuel burnout, the most optimal for modernization of the investigated boiler is the value of tertiary blast fraction equal to 0.2.
Read full abstract