A stiffness equation transfer method is proposed for transient dynamic response analysis of structures under various excitations. This method is a development and refinement of the combined finite element-transfer matrix (FE-TM) method. In the present method, the transfer of state vectors from left to right in the FE-TM method is changed into the transfer of general stiffness equations of every section from left to right. This method has the advantages of reducing the order of the ordinary transfer equation systems and minimizing the propagation of round-off errors occurring in recursive multiplication of transfer and point matrices. Furthermore, the drawback that the number of degrees of freedom on the left boundary must be the same as that on the right boundary in the ordinary FE-TM method, has now been avoided. The Newmark generalized acceleration formulation for time discretization is employed for a solution of the time problem. At the end, numerical examples are presented to demonstrate the accuracy as well as the potential of the proposed method for transient dynamic response analysis of structures.
Read full abstract