We study the motion of negligible mass in the frame work of Sitnikov five-body problem where four equal oblate spheroids known as primaries symmetrical in all respect are placed at the vertices of square. These primaries are also considered as source of radiations moving in a circular orbit around their common center of mass. The fifth negligible mass performs oscillations along z-axis which is perpendicular to the orbital plane of motion of the primaries and passes through the center of mass of the primaries. Under the combined effects of radiation pressure and oblateness, we have developed the series solution by the Lindstedt-Poincare technique and established averaged Hamiltonians by applying the Van der Pol transformation and averaging technique of Guckenheimer and Holmes (1983). The orbits such as regular, periodic, quasi-periodic, chaotic, or stochastic have been examined with the help of Poincare surfaces of section.