P-selectin plays an important role in the development of various diseases, including atherosclerosis and thrombosis. In our laboratory we recently identified a number of specific human P-selectin-binding peptides containing a Glu-Trp-Val-Asp-Val consensus motif, displaying a low micromolar affinity for P-selectin (IC(50) = 2 microm). In search of more potent antagonists for P-selectin, we have optimized the EWVDV pentapeptide core motif via a two-step combinatorial chemistry approach. A dedicated library of peptide derivatives was generated by introducing seven substituents at the N and C termini of the motif. In particular, pentapeptides with gallic acid or 1,3,5-benzenetricarboxylic acid substituents at the N terminus proved to be considerably more potent inhibitors of P-selectin binding than the parental peptide. After removal of the N-terminal glutamic acid from the core sequence, which appeared to be replaceable by a carboxamide function without loss of affinity, a second library was synthesized to map the chemical moieties within the gallic acid or 1,3,5-benzenetricarboxyl acid groups responsible for the enhanced P-selectin binding. Moreover, by varying the length and rigidity of the connective spacer, we have further optimized the spatial orientation of the N-terminal substituent. The combined use of phage display and subsequent combinatorial chemistry led to the design of a number of gallic acid- containing peptides with low nanomolar affinity for P-selectin both under static and dynamic conditions (IC(50) = 15.4 nm). These small synthetic antagonists, which are equally as potent as the natural ligand P-selectin glycoprotein ligand-1, are promising leads in anti-atherothrombotic therapy.
Read full abstract