The traditional processing method for the slices preparation of Rehmanniae roots is time- and energy-consuming and is prone to result in loss of active components during twice water-treatment (once for wash and the other for softening) and drying steps. In this study, we firstly explored an integrative processing technique for Rehmanniae Radix by 2x3 factorial experiment based on the contents of catalpol and verbascoside as measured by HPLC. The potential differences between the traditional stepwise processing technique and the integrative processing technique for catalpol and verbascoside in the prepared slices were investigated. To further confirm the effectiveness of drugs using the integrative processing technique, some pharmacological variables, such as rectal temperature, hematologic parameters (RBC, HGB, HCT, and blood viscosity), and coagulation parameters (TT, APTT, PT and FIB), were detected in a blood-heat and hemorrhage syndrome rat model. Two-way ANOVA analysis showed that drying for 18 h at 50°C was considered as the best combination of process conditions. The mean catalpol and verbascoside contents in the integrative method-processed samples (4.30% and 0.33%, respectively) were higher than those in the traditional method-processed samples (2.61% and 0.21%, respectively). Significant increases in rectal temperature, and hematologic parameters, TT, APTT, and FIB, were observed in the model group rats, compared to the blank group animals (P<0.01). Both in the integrative groups and traditional groups, the extracts caused significant decreases in rectal temperature, RBC, HGB, and HCT with increased concentration compared to the model group animals. All coagulation parameters tested were shortened in model rats received two kind prepared slices. There were no significant therapeutic differences between the integrative and the traditional method-processed slices on the hemostasis and hemorheological parameters in this blood-heat and hemorrhage syndrome rat model, indicating that our integrative method may be a feasible technique for processing Rehmanniae Radix slices.
Read full abstract