Cyclosporin A (CsA), which is widely used as an immunosuppressant, has a nephrotoxic side effect. The mechanism of this nephrotoxicity is not well understood; however, recent studies suggest that cyclophilin (cyp) is responsible for mediating the immunosuppressive action of CsA through the interaction with the Ca(2+)- and calmodulin-dependent phosphatase, calcineurin. While cyp A mRNA is expressed ubiquitously, cyp C mRNA has been shown to be topically expressed, including in the kidney. We examined: (1) distribution of cyp A and cyp C mRNA in microdissected murine nephron segments, using a combination of reverse transcription and polymerase chain reaction (RT-PCR) techniques, and (2) the effect of CsA administration on cyp C mRNA expression in proximal convoluted tubule. Among the nephron segments examined, large signals for cyp C PCR product were detected in proximal convoluted tubule and proximal straight tubule. Our data showed that the distribution of cyp C mRNA was uneven, and it mainly existed in segments that are relatively sensitive to CsA toxicity. In contrast, cyp A mRNA was found to be distributed almost equally along the nephron segments examined. By CsA administration, the signal for cyp C mRNA PCR product was increased. These results suggest that cyp C may play some role in the renal tubular disorder observed in CsA nephrotoxicity.