The paper is devoted to the problem of establishing right-convergence of sparse random graphs. This concerns the convergence of the logarithm of number of homomorphisms from graphs or hyper-graphs \(\mathbb{G }_N, N\ge 1\) to some target graph \(W\). The theory of dense graph convergence, including random dense graphs, is now well understood (Borgs et al. in Ann Math 176:151–219, 2012; Borgs et al. in Adv Math 219:1801–1851, 2008; Chatterjee and Varadhan in Eur J Comb 32:1000–1017, 2011; Lovász and Szegedy in J Comb Theory Ser B 96:933–957, 2006), but its counterpart for sparse random graphs presents some fundamental difficulties. Phrased in the statistical physics terminology, the issue is the existence of the limits of appropriately normalized log-partition functions, also known as free energy limits, for the Gibbs distribution associated with \(W\). In this paper we prove that the sequence of sparse Erdös-Rényi graphs is right-converging when the tensor product associated with the target graph \(W\) satisfies a certain convexity property. We treat the case of discrete and continuous target graphs \(W\). The latter case allows us to prove a special case of Talagrand’s recent conjecture [more accurately stated as level III Research Problem 6.7.2 in his recent book (Talagrand in Mean Field Models for Spin Glasses: Volume I: Basic examples. Springer, Berlin, 2010)], concerning the existence of the limit of the measure of a set obtained from \(\mathbb{R }^N\) by intersecting it with linearly in \(N\) many subsets, generated according to some common probability law. Our proof is based on the interpolation technique, introduced first by Guerra and Toninelli (Commun Math Phys 230:71–79, 2002) and developed further in (Abbe and Montanari in On the concentration of the number of solutions of random satisfiability formulas, 2013; Bayati et al. in Ann Probab Conference version in Proceedings of 42nd Ann. Symposium on the Theory of Computing (STOC), 2010; Contucci et al. in Antiferromagnetic Potts model on the Erdös-Rényi random graph, 2011; Franz and Leone in J Stat Phys 111(3/4):535–564, 2003; Franz et al. in J Phys A Math Gen 36:10967–10985, 2003; Montanari in IEEE Trans Inf Theory 51(9):3221–3246, 2005; Panchenko and Talagrand in Probab Theory Relat Fields 130:312–336, 2004). Specifically, Bayati et al. (Ann Probab Conference version in Proceedings of 42nd Ann. Symposium on the Theory of Computing (STOC), 2010) establishes the right-convergence property for Erdös-Rényi graphs for some special cases of \(W\). In this paper most of the results in Bayati et al. (Ann Probab Conference version in Proceedings of 42nd Ann. Symposium on the Theory of Computing (STOC), 2010) follow as a special case of our main theorem.