BackgroundThere is increasing evidence that gut fungi dysbiosis plays a crucial role in the development and progression of colorectal cancer (CRC). It has been reported that gut fungi exacerbate the severity of CRC by regulating tumor immunity. Our previous studies have shown that the opportunistic pathogenic fungal pathogen, Candida tropicalis (C. tropicalis) promotes CRC progression by enhancing the immunosuppressive function of MDSCs and activating the NLRP3 inflammasome of MDSCs. However, the relationship between IL-1β produced by NLRP3 inflammasome activation and the immunosuppressive function of MDSCs enhanced by C. tropicalis in CRC remains unclear.MethodsThe TCGA database was used to analyze the relationship between IL-1β and genes related to immunosuppressive function of MDSCs in human CRC. The expression of IL-1β in human CRC tissues was detected by immunofluorescence staining. The proteomic analysis was performed on the culture supernatant of C. tropicalis-stimulated MDSCs. The experiments of supplementing and blocking IL-1β as well as inhibiting the NLRP3 inflammasome activation were conducted. A mouse colon cancer xenograft model was established by using MC38 colon cancer cell line.ResultsAnalysis of CRC clinical samples showed that the high expression of IL-1β was closely related to the immunosuppressive function of tumor-infiltrated MDSCs. The results of in vitro experiments revealed that IL-1β was the most secreted cytokine of MDSCs stimulated by C. tropicalis. In vitro supplementation of IL-1β further enhanced the immunosuppressive function of C. tropicalis-stimulated MDSCs and NLRP3-IL-1β axis mediated the immunosuppressive function of MDSCs enhanced by C. tropicalis. Finally, blockade of IL-1β secreted by MDSCs augmented antitumor immunity and mitigated C. tropicalis-associated colon cancer.ConclusionsC. tropicalis promotes excessive secretion of IL-1β from MDSCs via the NLRP3 inflammasome. IL-1β further enhances the immunosuppressive function of MDSCs to inhibit antitumor immunity, thus promoting the progression of CRC. Therefore, targeting IL-1β secreted by MDSCs may be a potential immunotherapeutic strategy for the treatment of CRC.