This paper discusses a new approach to segment different types of skin cancers using fuzzy logic approach. The traditional skin cancer segmentation involves the analysis of image features to delineate the cancerous region from the normal skin. Using low level features such as colour and intensity, segmentation can be done by obtaining a threshold level to separate the two regions. Methods like Otsu optimisation provide a quick and simple process to optimise such threshold level; however this process is prone to the lighting and skin tone variations. Fuzzy clustering algorithm has also been widely used in image processing due to its ability to model the fuzziness of human visual perception. Classical fuzzy C means (FCM) clustering algorithm has been applied to image segmentation with good results; however, the classical FCM is based on type-1 fuzzy sets and is unable to handle uncertainties in the images. In this paper, we proposed an optimum threshold segmentation algorithm based on type-2 fuzzy sets algorithms to delineate the cancerous area from the skin images. By using the 3D colour constancy algorithm, the effect of colour changes and shadows due to skin tone variation in the image can be significantly reduced in the preprocessing stage. We applied the optimum thresholding technique to the preprocessed image over the RGB channels, and combined individual results to achieve the overall skin cancer segmentation. Compared to the Otsu algorithm, the proposed method is less affected by the shadows and skin tone variations. The results also showed more tolerance at the boundary of the cancerous area. Compared with the type-1 FCM algorithm, the proposed method significantly reduced the segmentation error at the normal skin regions.
Read full abstract