To investigate the mechanism mediating the regulatory effect of miR-155-5p on proliferation of human submandibular gland epithelial cells (HSGECs) in primary Sjogren's syndrome (pSS). Dual luciferase reporter assay was used to verify the targeting relationship between miR-155-5p and the PI3K/AKT pathway. In a HSGEC model of pSS induced by simulation with TRAIL and INF-γ, the effects of miR-155-inhibitor-NC or miR-155 inhibitor on cell viability, cell cycle, apoptosis and proliferation were evaluated using CKK8 assay, flow cytometry and colony formation assay. ELISA and RT-PCR were used to detect the expressions of inflammatory cytokines and miR-155-5p mRNA in the cells; Western blotting was performed to detect the expressions of proteins in the PI3K/AKT signaling pathway. Dual luciferase assay showed that miR-155-5p targets the PI3K/AKT pathway via PIK3R1 mRNA. The HSGEC model of pSS showed significantly decreased cell viability, cell clone formation ability and expressions IL-10 and IL-4 and increased cell apoptosis, cell percentage in G2 phase, expressions of TNF‑α, IL-6, miR-155-5p and PIK3R1 mRNA, p-PI3K/PI3K ratio, p-Akt/AKT ratio, and PIK3R1 protein expression. Treatment of the cell models with miR-155 inhibitor significantly increased the cell viability, G1 phase cell percentage, colony formation ability, and expressions of IL-10 and IL-4 levels, and obviously reduced cell apoptosis rate, G2 phase cell percentage, expressions of TNF-α, IL-6, miR-155-5p and PIK3R1 mRNA, p-PI3K/PI3K ratio, p-AKT/AKT ratio, and PIK3R1 protein expression. In HSGEC model of pSS, inhibition of miR-155-5p can promote cell proliferation and reduced cell apoptosis by targeting PI3K1 mRNA to negatively regulate the overexpression of PI3K/AKT signaling pathway.
Read full abstract