Plant pathogens pose significant threats to global cereal crop production, particularly for essential crops like rice and wheat, which are fundamental to global food security and provide nearly 40% of the global caloric intake. As the global population continues to rise, increasing agricultural production to meet food demands becomes even more critical. However, the production of these vital crops is constantly threatened by phytopathological diseases, especially those caused by fungal pathogens such as Magnaporthe oryzae, the causative agent of rice blast disease, Fusarium graminearum, responsible for Fusarium head blight (FHB) in wheat, and Zymoseptoria tritici, the source of Septoria tritici blotch (STB). All three pathogens are hemibiotrophic, initially colonizing the host through a biotrophic, symptomless lifestyle, followed by causing cell death through the necrotrophic phase. Additionally, they deploy a diverse range of effectors, including proteinaceous and non-proteinaceous molecules, to manipulate fundamental host cellular processes, evade immune responses, and promote disease progression. This review discusses recent advances in understanding the effector biology of these three pathogens, highlighting both the shared functionalities and unique molecular mechanisms they employ to regulate conserved elements of host pathways, such as directly manipulating gene transcription in host nuclei, disrupting reactive oxygen species (ROS) signaling, interfering with protein stability, and undermining host structural integrity. By detailing these complex interactions, the review explores potential targets for innovative control measures and emphasizes the need for further research to develop effective strategies against these destructive pathogens in the face of evolving environmental and agricultural challenges.
Read full abstract