Barium aluminate (BAO) ceramics are highly sought after as a kind of high-temperature refractory material due to their exceptional thermal stability in both vacuum and oxygen atmospheres, but their inherent brittleness results in rapid hardening, imposing a negative impact on the overall construction performance. Here, we report a strategy to synthesize flexible BAO nanofibers with a needle-like structure through confined-gelation electrospinning followed by in situ mineralization. The confined gelation among the colloidal particles promotes the formation of precursor nanofibers with high continuity and a large aspect ratio. The resulting flexible BAO nanofiber membranes are bendable, stretchable, and can even be woven, exhibiting a softness (12 mN) that is lower than that of tissue paper (27 mN). Additionally, they are capable of withstanding hundreds to thousands of continuous buckling and bending at 50% deformation without tearing. More importantly, the low emissivity of the flexible BAO nanofiber membranes ensures excellent thermal insulation at 1300 °C while preserving structural integrity and performance stability. In this sense, our strategy can be easily scaled up to produce flexible yet tough oxide ceramic membranes for a wider range of applications.
Read full abstract