The security analysis of the Ekert 1991 (E91), Bennett 1992 (B92), six-state protocol, Scarani–Acín–Ribordy–Gisin 2004 (SARG04) quantum key distribution (QKD) protocols, and their variants have been studied in the presence of collective-rotation noise channels. However, besides the Bennett–Brassard 1984 (BB84) being the first proposed, extensively studied, and essential protocol, its security proof under collective-rotation noise is still missing. Thus, we aim to close this gap in the literature. Consequently, we investigate how collective-rotation noise channels affect the security of the BB84 protocol. Mainly, we study scenarios where the eavesdropper, Eve, conducts an intercept-resend attack on the transmitted photons sent via a quantum communication channel shared by Alice and Bob. Notably, we distinguish the impact of collective-rotation noise and that of the eavesdropper. To achieve this, we provide rigorous, yet straightforward numerical calculations. First, we derive a model for the collective-rotation noise for the BB84 protocol and parametrize the mutual information shared between Alice and Eve. This is followed by deriving the quantum bit error rate (QBER) for two intercept-resend attack scenarios. In particular, we demonstrate that, for small rotation angles, one can extract a secure secret key under a collective-rotation noise channel when there is no eavesdropping. We observe that noise induced by rotation of 0.35 radians of the prepared quantum state results in a QBER of 11%, which corresponds to the lower bound on the tolerable error rate for the BB84 QKD protocol against general attacks. Moreover, a rotational angle of 0.53 radians yields a 25% QBER, which corresponds to the error rate bound due to the intercept-resend attack. Finally, we conclude that the BB84 protocol is robust against intercept-resend attacks on collective-rotation noise channels when the rotation angle is varied arbitrarily within particular bounds.
Read full abstract