Strongly correlated systems present fundamental challenges, especially in materials in which electronic correlations cause a strong increase of the effective mass of the charge carriers. Heavy fermion metals — intermetallic compounds of rare earth metals (such as Ce, Sm and Yb) and actinides (such as U, Np and Pu) — are prototype systems for complex and collective quantum states; they exhibit both a lattice Kondo effect and antiferromagnetic correlations. These materials show unexpected phenomena; for example, they display unconventional superconductivity (beyond Bardeen–Cooper–Schrieffer (BCS) theory) and unconventional quantum criticality (beyond the Landau framework). In this Review, we focus on systems in which Landau's Fermi-liquid theory does not apply. Heavy fermion metals and semiconductors are well suited for the study of strong electronic correlations, because the relevant energy scales (for charge carriers, magnetic excitations and lattice dynamics) are well separated from each other, allowing the exploration of concomitant physical phenomena almost independently. Thus, the study of these materials also provides valuable insight for the understanding — and tailoring — of other correlated systems. Heavy fermion systems are ideally suited to study strong electronic correlations. These fascinating materials are characterized by a clear separation of the relevant energy scales and may exhibit quantum critical points, non-Fermi-liquid behaviour and unconventional superconductivity coexisting or competing with magnetism.
Read full abstract