BackgroundThis randomized, double-blind, placebo-controlled study aimed to investigate the effects of γ-tocopherol (Toc) supplementation on premenstrual symptoms and natriuresis.MethodsWe enrolled 51 Japanese women with premenstrual symptoms, particularly those who showed increased symptoms induced by water retention during the luteal phase compared with the follicular phase. Premenstrual symptoms were recorded in the first cycle’s postmenstrual follicular phase; physical measurements and urine collection were conducted during the 48-h run-in period. The test supplement, which contained 180 mg of γ-Toc or placebo, was orally administered twice a day for 7 days during the luteal phase of the first and second cycles in a crossover manner. The same evaluation was conducted during the luteal phase, beginning in the morning of the sixth day of supplement administration.ResultsCompared with placebo intake, γ-Toc intake significantly reduced “fatigue” and “irritability/anger” symptoms. Furthermore, compared with placebo intake, γ-Toc intake significantly reduced the thigh circumference. Regarding the “swelling of the legs” and “heavy legs” symptoms and the thigh circumference, the biphasic trend of increasing and decreasing values in the daytime and morning, respectively, during the follicular phase was not observed at the luteal phase with placebo intake. Contrastingly, γ-Toc intake resulted in significantly lower values in the morning than placebo intake. The mean difference in 24-h urinary sodium excretion between γ-Toc and placebo intake was 10.6 mEq (95% confidence interval (CI): -0.1, 21.4, p = 0.05, power 55%). Plasma γ-Toc and its metabolite γ-carboxyethyl hydroxychroman (CEHC) levels were significantly higher with γ-Toc intake than with placebo intake. There were no significant between-supplement differences in serum electrolyte levels or cumulative urinary potassium excretion.Conclusionγ-Toc intake could effectively alleviate certain premenstrual syndrome symptoms, particularly those related to water retention during the luteal phase. Furthermore, the underlying mechanism may involve the diuretic effect of γ-CEHC, which is a γ-Toc metabolite.Trial registrationUMIN000047989; registration date: 10/06/2022, retrospectively registered.
Read full abstract