Capacitive micromachined ultrasonic transducers (cMUTs) were developed to meet the demands of the ultrasonic industry. To achieve maximum efficiency, the conventional operation of the cMUT requires a bias voltage close to the collapse voltage. Total acoustic output pressure is limited by the efficiency of the cMUT and the maximum-allowed pulse voltage on the membrane. In this paper, we propose the collapse-snapback operation of the cMUT: the membrane is collapsed onto the substrate in the collapsing cycle, and released in the snapback cycle. The collapse-snapback operation overcomes the above-mentioned limitations of the conventional operation. The collapse-snapback operation utilizes a larger range of membrane deflection profiles (both collapsed and released profiles) and generates higher acoustic output pressures. The static finite element calculations were performed to design cMUTs with specific collapse and snapback voltages by changing the electrode parameters (radius (re), position (de), and thickness (te)). These designs were refined for optimum average displacement per cycle. An electrode radius greater than 60% of the membrane radius significantly improved the displacement per volt. Moderately thick membranes (te approximately 0.2 microm) were preferred, as thicker membranes reduced the displacement per volt. Under proper bias conditions, the collapse-snapback operation, designed for high-power transmission, allowed the application of pulse voltages larger than the difference of collapse and snapback voltages. Dynamic finite element calculations of an infinite cMUT array on the substrate loaded with acoustic fluid medium were performed to determine the dynamic response of the cMUT. Commercially available FEM packages ANSYS and LS-DYNA were used for static and dynamic calculations, respectively. The cMUTs were fabricated for optimal performance in the collapse-snapback operation. The transmit experiments were performed on a 2-D cMUT array using a calibrated hydrophone. Taking into account the attenuation and diffraction losses, the pressure on the cMUT surface was extracted. The cMUT generated 0.47 MPa (6 kPa/V) and 1.04 MPa (11 kPa/V) in the conventional and collapse-snapback operations, respectively. Therefore, collapse-snapback operation of the cMUTs was superior for high-power transmission.
Read full abstract