In view of the significant cold-start hydrocarbon emission reduction potential of the electrically heated converter (EHC) technology for conventional stoichiometric gasoline engines, there is considerable interest in better understanding of the thermal and emission performance characteristics and optimizing the design/operating aspects of an EHC system as applied to plug-in hybrid electric vehicles (PHEVs) and extended-range electric vehicles (EREVs). The application of the EHC technology to these hybrid vehicles is unique in that catalyst cooling to below reaction temperatures can occur during extended periods of electric vehicle driving (with engine off) or during intermittent engine stops/starts, and the EHC can be heated prior to engine start (preheating) for enhanced emission reduction. In this study, the design aspects and heating strategies of an EHC system have been analyzed using a transient monolith converter model which accounts for the resistive heating of an inert metal−substrate monolith placed ahead of a conventional three-way catalytic converter. The results of model calculations presented here quantify the effects of various heating strategies on the emission performance of hybrid vehicles during the first 250 s of the Federal Test Procedure (FTP) drive cycle. It is also shown that there exists an optimum electric heater volume for cases with either preheating only or a combination of pre- and postheating. For the latter case, the emission performance can be further improved by adding a smaller electric heater (downstream of the existing heater) which is capable of heating the gas rapidly and efficiently during postheating.
Read full abstract