In this study, the hot forming quenching process was investigated to improve the deficiencies that arise in materials subjected to conventional cold stamping, such as low formability and undesirable mechanical properties. The hot forming quenching process was mainly discussed in terms of formability and mechanical properties in this study and was first evaluated by preliminary tests. To examine formability, an evaluation was conducted using hot-tensile and hemispherical-dome stretching tests at temperatures of 350°C and 450°C, respectively. In addition, the mechanical properties of the formed part were predicted using quench factor analysis, which was based on the cooling temperature during the die quenching process. These preliminary test results were then used to predict the formability and hardness of the partition panel of an automotive part, where the analytical results indicated high performance of the hot forming quenching process, in contrast to conventional forming. Finally, the hot forming quenching experiment of the partition panel was carried out to validate the predicted results and the obtained formability and hardness values were compared with conventional forming at room temperature using T4 and T6 heat-treated sheets. The analytical and experimental results indicate that the hot forming quenching process is a very effective method for obtaining desirable formability and mechanical properties in the forming of aluminum sheets.