Background and Objective: Hypothermia has shown promise as a neuroprotective strategy for stroke. The use of whole body hypothermia has limited clinical utility due to many severe side effects. Selective brain cooling, or local brain hypothermia, has been previously proposed as an alternative treatment strategy. This study investigated the safety, feasibility, and efficacy of selective brain hypothermia induced by local infusion of ice-cold lactated Ringer’s solution in rhesus monkeys.Methods: Eight male rhesus monkeys were used in this study. Brain temperature in the territory supplied by middle cerebral artery (MCA) was reduced by infusing 100 mL of ice-cold (0 °C) lactated Ringer’s solution over 20 min via a micro-catheter placed in the proximal MCA (n = 4). Vital signs and the temperature of the brain and rectum were monitored before and after infusion. Transcranial Doppler, Magnetic resonance imaging (MRI), and digital subtraction angiography (DSA) were used to evaluate cerebral blood flow, cerebrovascular reactivity (CVR), cerebral edema, and vasospasm. Another cohort of rhesus monkeys (n = 4) were used as systemic cooling controls.Results: Oxygen saturation, blood pressure, heart rate, and hematologic analysis of the two groups remained within the normal range after infusion. Mild cerebral hypothermia (<35 °C) was achieved in 10 min (0.3 °C/min) and was maintained for 20 min in local cortex and striatum following local infusion. The average lowest cerebral temperature in the locally cooled animals was 33.9 ± 0.3 °C in the striatum following 20-min infusion. This was not observed in animals cooled by systemic infusion. The decreases in the rectal temperature for local and systemic infusion were 0.5 ± 0.2 °C and 0.5 ± 0.3 °C, respectively. Selective brain cooling did not cause any cerebral edema as determined by MRI or vasospasm in the perfused vessel based on DSA. Selective cerebral hypothermia did not significantly alter CVR.Conclusion: Local infusion of ice-cold lactated Ringer’s solution via micro-catheter is a safe and effective method for selective cerebral hypothermia. This cooling method could potentially be developed as a new treatment in acute ischemic stroke.
Read full abstract