We study an ensemble of cold atoms driven to the four-level double-$\ensuremath{\Lambda}$ configuration and trapped in the one-dimensional optical lattices for achieving dynamically controlled photonic band gaps (PBGs) via the balanced four-wave mixing interaction. Numerical results show that a pair of PBGs characterized by high platforms of probe reflectivities and reduced density of photonic states are established, simultaneously, on both probe transitions in one symmetric driving scheme. Such two-color PBGs can be easily manipulated in position and width by modulating, e.g., the balanced Rabi frequencies of two coupling fields and the Gaussian widths of atomic density distributions, to change the equal probe detunings fulfilling both Bragg conditions. Each two-color PBG as predicted in the coherent atomic lattices may be explored to attain robust light entanglement, even for single-probe photons, via an efficient frequency conversion during the nonlinearly correlated reflection.