Artifacts caused by large magnetic susceptibility differences between metallic needles and tissue are a persistent problem in many interventional MRI applications. The signal void caused by the needle can hide procedure targets and prevent accurate image-based monitoring. In this paper, a solution to this problemis presented in the form of an active shim insert inspired from degaussing coils used in naval vessels, that isdesignedto correct the field disturbance (ΔB0 ) caused by the needle. The ΔB0 induced by a 10 gauge hollow single-beveled titanium needle at 3T is modeled in different orientations. A set of 63 orthogonal coil pairs with unique tip paths are evaluated for shimming performance, and an optimal coil pair is chosen. Shimming performance and current demands are evaluated over a range of needle orientations. Robust correction of the titanium needle induced ΔB0 is predicted using a flat no-loop coil combined with an orthogonal 1½ turn loop coil angled at the bevel angle for most orientations, with currents well below 1 amp per coil. Reductions in ΔB0 standard deviations with shimming ranged from ~49% to ~10% depending on needle orientation, with performance worsening as the needle is aligned more along B0 . Simulations predict that it is possible to minimize metallic probe induced ΔB0 and signal losses using externally supplied direct current shim coil inserts in arbitrary orientations for potential benefits in many interventional MRI applications.