We reconstruct hermitian K-theory via algebraic symplectic cobordism. In the motivic stable homotopy category SH(S), there is a unique morphism ϕ: MSp → BO of commutative ring T-spectra which sends the Thom class thMSp to the Thom class thBO. Using ϕ we construct an isomorphism of bigraded ring cohomology theories on the category $${\mathop{\rm Sm}\nolimits} {\mathcal O}p/S,\bar \varphi :{{\mathop{\rm MSp}\nolimits} ^{*,*}}(X,U){ \otimes _{{\rm{MS}}{{\rm{p}}^{4*,0*}}({\rm{pt}})}}{\rm{B}}{{\rm{O}}^{4*,2*}}({\rm{pt}}) \cong {\rm{B}}{{\rm{O}}^{*,*}}(X,U)$$. The result is an algebraic version of the theorem of Conner and Floyd reconstructing real K-theory using symplectic cobordism. Rewriting the bigrading as MSpp,q = MSp1[q], we have an isomorphism $$\bar \varphi :{{\mathop{\rm MSp}\nolimits} _*}^{[*]}(X,U){ \otimes _{{\rm{MSp}}_0^{[2*]}({\rm{pt}})}}{\rm{KO}}_0^{[2*]}({\rm{pt}}) \cong {\rm{K}}{{\rm{O}}_*}^{[*]}(X,U)$$, where the KOi[](X,U) are Schlichting’s hermitian K-theory groups.
Read full abstract