We prove that any analytic vacuum spacetime with a positive cosmological constant in four and higher dimensions, that contains a static extremal Killing horizon with a maximally symmetric compact cross-section, must be locally isometric to either the extremal Schwarzschild de Sitter solution or its near-horizon geometry (the Nariai solution). In four-dimensions, this implies these solutions are the only analytic vacuum spacetimes that contain a static extremal horizon with compact cross-sections (up to identifications). We also consider the analogous uniqueness problem for the four-dimensional extremal hyperbolic Schwarzschild anti-de Sitter solution and show that it reduces to a spectral problem for the laplacian on compact hyperbolic surfaces, if a cohomological obstruction to the uniqueness of infinitesimal transverse deformations of the horizon is absent.