A shear-lag model is proposed to obtain interface characteristics of nanorope reinforced polymer composites using representative volume element (RVE) concept. In the axisymmetric RVE, the nanorope is modelled as a closed-packed cylindrical lattice consisting seven single-walled carbon nanotubes. In the model, rope is considered to be perfectly bonded with the polymer resin where the nanotubes are assumed to be chemically non-bonded with each other in the rope system. Since, nanotubes are considered to be non-bonded in the nanorope there must exist a van der Waals interaction in terms of Lennard-Jones potential. A separate model is also proposed to determine the cohesive stress caused by this interaction. Closed form analytical solutions are derived for stress components of rope, resin and individual carbon nanotubes in the rope system. Parametric study has also been conducted to investigate the influences of key composite factors involved at both perfectly bonded and non-bonded interfaces.