Synthetic aperture radar tomography (TomoSAR) has gained significant attention for three-dimensional (3D) imaging in urban environments. A notable limitation of traditional TomoSAR approaches is their primary focus on persistent scatterers (PSs), disregarding targets with temporal decorrelated characteristics. Temporal variations in coherence, especially in urban areas due to the dense population of buildings and artificial structures, can lead to a reduction in detectable PSs and suboptimal 3D reconstruction performance. The concept of partially coherent scatterers (PCSs) has been proven effective by capturing the partial temporal coherence of targets across the entire time baseline. In this study, an novel approach based on an iterative sub-network generation method is introduced to leverage PCSs for enhanced 3D reconstruction in dynamic environments. We propose a coherence constraint iterative variance analysis approach to determine the optimal temporal baseline range that accurately reflects the interferometric coherence of PCSs. Utilizing the selected PCSs, a 3D imaging technique that incorporates the iterative generation of sub-networks into the SAR tomography process is developed. By employing the PS reference network as a foundation, we accurately invert PCSs through the iterative generation of local star-shaped networks, ensuring a comprehensive coverage of PCSs in study areas. The effectiveness of this method for the height estimation of PCSs is validated using the TerraSAR-X dataset. Compared with traditional PS-based TomoSAR, the proposed approach demonstrates that PCS-based elevation results complement those from PSs, significantly improving 3D reconstruction in evolving urban settings.
Read full abstract