Abstract

AbstractThe Jiamusi (JME) radar is the first high‐frequency coherent scatter radar independently developed in China. In this study, we investigate the statistical characteristics of the Jiamusi radar scattering occurrence rate from the F‐region ionosphere between 40°N and 65°N geomagnetic latitude (MLAT) from March 2018 to November 2019. Then, the diurnal and seasonal variations in scattering echoes and their dependence on geomagnetic conditions are statistically investigated. It is shown that the local time of the peak scattering occurrence rate varies depending on the seasons, that is, approximately 20–22.5 magnetic local time (MLT) in summer, 17.5–20.5 MLT in equinox, and 16–17.5 MLT in winter, which is closely associated with the time of sunset. The occurrence rate also increases with the enhancement of the Kp index. To further understand the mechanism of these features, we simulate the distribution of the gradient drift instability (GDI) indicator by using the Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIEGCM). The analysis results indicate that the GDI may be one of the factors that contribute to these characteristic features.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call