In recent years, metal halide perovskite has gradually become a hotspot in the field of optoelectronics. However, the inherent instability of CsPbX3 quantum dots (QDs) seriously affects the amplified spontaneous emission (ASE) or lasing performance. Herein, the highly stable CsPbBr3 random laser is realized in SiO2-QDs-SiO2 (SQS) composite nanostructure doped with Ag nanoislands. The strong scattering generated by SQS composite nanostructure and the localized surface plasmon resonance (LSPR) of metal silver nanoislands provide optical feedback for the formation of random laser. Then a coherent random laser with low threshold (∼2.2 mJ/cm2) is obtained. SiO2 microspheres anchor QDs to avoid photoinduced regeneration and fluorescence quenching caused by QDs clusters. The inner QDs of SQS are effectively protected from water erosion, thus resulting that the samples have higher water resistance. The luminescence intensity still maintains 70 % of the original intensity after 40 days with the addition of pure water. Our research provides an effective method for improving the water stability of perovskite QDs. The highly stable random laser based on perovskite quantum dot film has a wide application prospect in integrated optoelectronics, display imaging and sensing measurement.
Read full abstract