Abstract

Controlling emission of light in random structures/disordered systems, e.g., implementing mode-locked pulses in a laser system with a random structures/disordered systems, is a complex task. Usually, the generation of laser pulse by mode locking needs a stable fixed-length cavity that determines a specific repetition rate of the mode-locked pulses. Here, mode-locking laser pulses with selectable repetition rates are achieved in a typical one-dimensional disordered laser by passive mode locking. The laser includes disordered reflectors to provide multiple resonant modes associated with different cavity length. The regular pulses with adjustable repetition rates can be generated and selected by a nonlinear polarization rotator and a semiconductor saturable absorber mirror. The proposed work utilizing the advantages of multiple resonances in random lasers could pave a new way for regulating emission of light in the random structures/disordered system. And it displays an effective and realistic technical route to study ultrafast pulses generation and optical soliton dynamics in random structures/disordered systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call