Abstract

Controlling emission of light in random structures/disordered systems, e.g., implementing mode-locked pulses in a laser system with a random structures/disordered systems, is a complex task. Usually, the generation of laser pulse by mode locking needs a stable fixed-length cavity that determines a specific repetition rate of the mode-locked pulses. Here, mode-locking laser pulses with selectable repetition rates are achieved in a typical one-dimensional disordered laser by passive mode locking. The laser includes disordered reflectors to provide multiple resonant modes associated with different cavity length. The regular pulses with adjustable repetition rates can be generated and selected by a nonlinear polarization rotator and a semiconductor saturable absorber mirror. The proposed work utilizing the advantages of multiple resonances in random lasers could pave a new way for regulating emission of light in the random structures/disordered system. And it displays an effective and realistic technical route to study ultrafast pulses generation and optical soliton dynamics in random structures/disordered systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.