Slow-moving landslides are often precursors of catastrophic failure, posing a major threat to human life and property safety. Interferometric synthetic aperture radar (InSAR) has become a crucial tool for investigating slow-moving landslides hazard because of its high-precision detection capability for slow surface deformation. However, landslides usually occur in alpine canyon areas and vegetation coverage areas where InSAR measurements are still limited by temporal and spatial decorrelation and atmospheric influences. In addition, there are several difficulties in monitoring the multiscale characterization of landslides from the InSAR results. To address this issue, this paper proposes a novel method for slow-moving landslide hazard assessment in low-coherence regions. A window-based atmosphere correction method is designed to highlight the surface deformation signals of InSAR results in low-coherence regions and reduce false alarms in landslide hazard assessment. Then, the deformation annual velocity rate map, coherence map and DEM are used to construct the InSAR sample set. A landslide hazard assessment model named Landslide-SE-Unilab is subsequently proposed. The global–local relationship aggregation structure is designed to capture the spatial relationship between local pixel-level deformation features and global landslides, which can reduce the number of missed assessments and false assessments of small-scale landslides. Additionally, a squeeze-and-excitation network is embedded to adjust the weight relationship between the features of each channel in order to enhance the performance of network evaluation. The method was evaluated in Kangding city and the Jinsha River Valley in the Hengduan Mountains, where a total of 778 potential landslides with slow deformation were identified. The effectiveness and accuracy of this approach for low-coherence landslide hazard assessment are demonstrated through comparisons with optical images and previous research findings, as well as evaluations via time-series deformation results.
Read full abstract