To evaluate a computer-based Farnsworth-Munsell (FM) 100-hue test and compare it with a manual FM 100-hue test in normal and congenital color-deficient individuals. Fifty color defective subjects and 200 normal subjects with a best-corrected visual acuity ≥ 6/12 were compared using a standard manual FM 100-hue test and a computer-based FM 100-hue test under standard operating conditions as recommended by the manufacturer after initial trial testing. Parameters evaluated were total error scores (TES), type of defect and testing time. Pearson's correlation coefficient was used to determine the relationship between the test scores. Cohen's kappa was used to assess agreement of color defect classification between the two tests. A receiver operating characteristic curve was used to determine the optimal cut-off score for the computer-based FM 100-hue test. The mean time was 16 ± 1.5 (range 6-20) min for the manual FM 100-hue test and 7.4 ± 1.4 (range 5-13) min for the computer-based FM 100-hue test, thus reducing testing time to <50 % (p < 0.05). For grading color discrimination, Pearson's correlation coefficient for TES between the two tests was 0.91 (p < 0.001). For color defect classification, Cohen's agreement coefficient was 0.98 (p < 0.01). The computer-based FM 100-hue is an effective and rapid method for detecting, classifying and grading color vision anomalies.