IntroductionCognitive Map Theory predicts that the hippocampus (HPC) plays a specialized, time-invariant role in supporting allocentric spatial memory, while Standard Consolidation Theory makes the competing prediction that the HPC plays a time-limited role, with more remote memories gaining independence of HPC function. These theories, however, are largely informed by the results of laboratory-based tests that are unlikely to simulate the demands of representing real-world environments in humans. Validation of these theories is further limited by an overall focus on spatial memory of newly encountered environments and on individuals with extensive lesions to the HPC and to surrounding medial temporal lobe (MTL) regions. The current study incorporates naturalistic tests of spatial memory based on recently and remotely encountered environments navigated by individuals with lesions to the HPC/MTL or that are limited to the HPC's major output, the fornix. MethodsFour participants with bilateral HPC/MTL and/or fornix lesions drew sketch maps of recently and remotely experienced neighbourhoods and houses. Tests of the appearance, distances, and routes between landmarks from the same real-world environments were also administered. Performance on the tasks was compared to that of control participants closely matched in terms of exposure to the same neighbourhoods and home environments as well as to actual maps. ResultsThe performance of individuals with fornix/MTL lesions was found to be largely comparable to that of controls on objective tests of spatial memory, other than one case who was impaired on remote and recent conditions for several tasks. The nature of deficits in recent and remote spatial memory were further revealed on house floorplan drawings, which contained spatial distortions, room/structure transpositions, and omissions, and on neighbourhood sketch maps, which were intact in terms of overall layout but sparse in details such as landmarks. ConclusionLab-based tests of spatial memory of newly learned environments are unlikely to fully capture patterns of spared and impaired representations of real-world environments (e.g., peripheral features, configurations). Naturalistic tasks, including generative drawing tasks, indicate that contrary to Cognitive Map Theory, neither HPC nor MTL are critical for allocentric gross representations of large-scale environments. Conversely, the HPC appears critical for representing detailed spatial information of local naturalistic environments and environmental objects regardless of the age of the memory, contrary to Standard Consolidation Theory.
Read full abstract