In solid substrates, colloidal solutions produce irregular deposits on the surface by Marangoni flow and capillary flow during evaporation. Reportedly, perovskite quantum dots (PQDs) as a colloidal solution have irregular surfaces based on a similar principle as the coffee ring effect in QD systems when droplets evaporate from the substrate. Given that this issue is due to the direction of Marangoni and capillary flows, the substrate is tilted to change the direction of the flows. The appropriate angle is determined by controlling the angle of the substrate so that the two flows circulate similarly; this method is called "assembly-coating". Herein, we compare the PL intensity before and after the thermal evaporation of the thin films prepared by conventional and assembly-coating. Moreover, by characterizing the diode device (hole-only space charge limited current) for each coating process, the charge carrier characteristics are investigated in detail. Therefore, we suggest a facile strategy to obtain a uniform surface and thermal evaporative stability using colloidal solutions. This strategy is effective in designing surface uniformity and light-emitting layers for colloidal solution deposition and assembly.
Read full abstract